研究生入學(xué)考試大綱是關(guān)于研究生考試的重要文件。最近有同學(xué)咨詢(xún)上海電力大學(xué)研究生入學(xué)考試大綱,該校2023碩士研究生部分新增初試科目考試大綱預(yù)告已公布,下面上海高頓考研網(wǎng)將上海電力大學(xué)2023年碩士研究生入學(xué)初試831《高等代數(shù)》課程考試大綱同步給大家。
上海電力大學(xué)最新考試大綱,碩士研究生入學(xué)新增科目
為了幫助廣大考生復(fù)習(xí)備考,也應(yīng)廣大考生的要求,現(xiàn)提供我校自命題專(zhuān)業(yè)課的考試大綱供考生下載??忌趶?fù)習(xí)備考時(shí),應(yīng)全面復(fù)習(xí),我校自命題專(zhuān)業(yè)課的考試大綱僅供參考。
上海電力大學(xué)2023年碩士研究生入學(xué)初試831《高等代數(shù)》課程考試大綱
一、參考書(shū)目:
黃廷祝主編.高等代數(shù)(第二版).北京:高等教育出版社,2016年。
二、復(fù)習(xí)的總體要求
要求考生全面系統(tǒng)地了解高等代數(shù)的基本概念,基本理論,熟練掌握高等代數(shù)的根本思想和根本方法。
三、主要復(fù)習(xí)內(nèi)容
第O章預(yù)備知識(shí)
掌握群,域的概念,并會(huì)根據(jù)概念進(jìn)行判斷。
第一章矩陣及其運(yùn)算
矩陣的運(yùn)算,矩陣的初等變換,逆矩陣的定義和計(jì)算,分塊矩陣。
第二章行列式
行列式的定義,階行列式的計(jì)算,Laplace展開(kāi)定理,分塊矩陣的初等變換,求分塊矩陣的逆矩陣,矩陣的伴隨矩陣,矩陣的秩。
第三章維向量空間
向量空間的概念,向量組的線性相關(guān)性,向量組的秩與極大無(wú)關(guān)組,線性方程組解的結(jié)構(gòu)。
第四章多項(xiàng)式
多項(xiàng)式的帶余除法,多項(xiàng)式的綜合除法,多項(xiàng)式的最大公因式,輾轉(zhuǎn)相除法,因式分解定理,重因式,不可約因式,多項(xiàng)式的根與根的重?cái)?shù),復(fù)系數(shù),實(shí)系數(shù)與有理系數(shù)多項(xiàng)式的因式分解定理。
第五章線性空間
線性空間的定義,會(huì)判斷一個(gè)集合是否是線性空間,線性空間之間的同構(gòu)關(guān)系,線性空間的基,維數(shù),坐標(biāo)的概念,線性空間的基變換與坐標(biāo)變換,線性子空間的交與和,線性子空間的直和。
第六章線性變換
線性映射與線性變換的概念,會(huì)寫(xiě)出線性映射和線性變換在一組基下的矩陣,線性映射的像與核,線性變換是否可逆的判斷,線性變換在不同基下的矩陣關(guān)系,矩陣的特征值和特征向量,線性變換的特征值和特征向量,矩陣的相似對(duì)角化,不變子空間的定義和判斷。
第七章Jordan標(biāo)準(zhǔn)形與-矩陣
最小多項(xiàng)式,-矩陣的初等變換,-矩陣的相抵標(biāo)準(zhǔn)形,不變因子,行列式因子,有理標(biāo)準(zhǔn)形,初等因子,Jordan標(biāo)準(zhǔn)形。
第八章歐式空間
內(nèi)積與歐式空間的概念,度量矩陣,標(biāo)準(zhǔn)正交基,施密特正交化,正交矩陣,正交變換,正交補(bǔ)空間,實(shí)對(duì)稱(chēng)矩陣的標(biāo)準(zhǔn)形。
第九章二次型與雙線性函數(shù)
二次型的定義,配方法,正交線性變換化實(shí)二次型為標(biāo)準(zhǔn)形,正定二次型,負(fù)定二次型,霍爾維茨定理。
文章來(lái)源:https://yjsc.shiep.edu.cn/8b/e4/c948a232420/page.htm
以上就是2023年上海電力大學(xué)碩士研究生入學(xué)初試新增科目《高等代數(shù)》課程考試大綱,大家在備考的時(shí)候可以以2023年考試大綱為準(zhǔn),其他院校大綱公布后也會(huì)同步給大家。
錯(cuò)過(guò)大綱解析
你就錯(cuò)過(guò)了重要的信息
 
考研以考試定勝敗,考試以考綱定方向
考研大綱=出題人依據(jù)
了解考綱=掌握出題變化
火速來(lái)預(yù)約23考研大綱解析峰會(huì)
讓你快人一步,找對(duì)沖刺備考方向
關(guān)注公眾號(hào)
快掃碼關(guān)注
公眾號(hào)吧
考研公眾號(hào)
63