眾所周知,高數(shù)的知識點又多又雜,不可避免的會出現(xiàn)一些自己搞錯的地方。為此,高頓考研數(shù)學老師整理了在高數(shù)中考生們常犯的9個高頻易錯考點。
 
  1.函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點連續(xù),則該函數(shù)在該點必有極限。若函數(shù)在某點不連續(xù),則該函數(shù)在該點不一定無極限。
 
  2,若函數(shù)在某點可導,則函數(shù)在該點一定連續(xù)。但是如果函數(shù)不可導,不能推出函數(shù)在該點一定不連續(xù)。
 
  3.基本初等函數(shù)在其定義域內是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。
 
  4.在一元函數(shù)中,駐點可能是極值點,也可能不是極值點。函數(shù)的極值點必是函數(shù)的駐點或導數(shù)不存在的點。
 
  5.無窮小量與有界變量之積仍是無窮小量。
 
  6.可導是對定義域內的點而言的,處處可導則存在導函數(shù),只要一個函數(shù)在定義域內某一點不可導,那么就不存在導函數(shù),即使該函數(shù)在其它各處均可導。
 
  7.在求極限的問題中,極 限包括函數(shù)的極 限和數(shù)列的極 限,但在考試中一般出的都是函數(shù)的極限,求函數(shù)的極限中,主要是掌握公式,有些不常見的公式一定要記熟,這種類型的題一般屬于簡單題,但往更難一點的方向出題的話,它會和變上限的定積分聯(lián)系在一起出題。
 
  8.在運用兩個重要極 限求函數(shù)極 限的時候,一定要首先把所求的式子變換成類似于兩個重要極 限的形式,其次還需要看自變量的取極 限的范圍是否和兩個重要極 限一樣。
 
  9.介值定理和零點定理的巧妙運用關鍵在于,觀察和變換所要證明的式子的形式,構造輔助函數(shù)。
 
  以上就是高頓考研老師為大家整理的高數(shù)中常犯的9個錯誤,希望大家可以在復習備考的過程中能夠對上面提到的易錯點能夠加以重視,祝大家都能早日考上心儀的學校。