Copyright ? 2006-2024 高頓教育, All Rights Reserved. 網(wǎng)站地圖
21題 老師巴黎公社是誰領(lǐng)導(dǎo)發(fā)動的呢? 考試時列寧的新經(jīng)濟(jì)全選就行了嗎?肖八好像列寧新經(jīng)濟(jì)每卷都差不多有一題?
教師回復(fù): 是這么理解的:正項級數(shù)收斂就意味著它們加起來是等于一個常數(shù)的,而偶(奇)數(shù)項只是正項級數(shù)的一部分,那么它們加起來肯定也是一個常數(shù),所以是收斂的。嚴(yán)格的證明需要按照正項級數(shù)收斂的定義,用單調(diào)有界定理來證明。
教師回復(fù): 這里應(yīng)該套用的是ln1+x的公式,因為x趨于0的,然后可以把-x帶入
教師回復(fù): 可以按照這個來理解因為AB=0,所以矩陣B的列向量都是線性方程組AX=0的解;則矩陣B的列向量組的秩,不大于方程組AX=0的基礎(chǔ)解系的個數(shù),也就是說矩陣B的列向量組可以由AX=0 的基礎(chǔ)解系線性表示,所以R(B) <= n-R(A),故R(A)+R(B)小于等于n。
教師回復(fù): 這是個感嘆句,使用了倒裝,順過來說是 a day makes a difference. 某一天產(chǎn)生了重要的作用/ 某一天發(fā)生了一個變化。 用感嘆語氣,則是 某一天產(chǎn)生了多么大變化啊?。骋惶旌推綍r非常不一樣);翻譯則調(diào)整表達(dá)為: 多么與眾不同的一天??! 多么特別的一天啊!
教師回復(fù): 題里面如果讓你求得一個正交矩陣的話,就一定要正交化和單位化如果求正交矩陣,所求的特征向量天然正交,就不需要正交化只單位化就可以了如果題目只要求一個可逆矩陣的話,就不需要正交化和單位化