2023年考研大綱已經新鮮出爐,下面上海高頓考研將2023考研數學三微積分部分大綱原文同步給大家,考生們可以對照下往年的考研大綱看有哪些變化。領取超全解析文檔可以掃面最下方二維碼。
 
2023考研數學大綱,數學三考研大綱,微積分考研大綱
2023考研數學三——微積分部分大綱原文
一、函數、極限、連續(xù)
【考試內容】
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數基本初等函數的性質及其圖形初等函數函數關系的建立
數列極限與函數極限的定義及其性質函數的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限:
函數連續(xù)的概念函數間斷點的類型初等函數的連續(xù)性閉區(qū)間上連續(xù)函數的性質
【考試要求】
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性、單調性、周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之間的關系.
6.了解極限的性質與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.
7.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
8.理解函數連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數間斷點的類型.
9.了解連續(xù)函數的性質和初等函數的連續(xù)性,理解閉區(qū)間上連續(xù)函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.
二、一元函數微分學
【考試內容】
導數和微分的概念導數的幾何意義和經濟意義函數的可導性與連續(xù)性之間的關系平面曲線的切線與法線導數和微分的四則運算基本初等函數的導數復合函數、反函數和隱函數的微分法高階導數一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值
【考試要求】
1.理解導數的概念及可導性與連續(xù)性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.
2.掌握基本初等函數的導數公式、導數的四則運算法則及復合函數的求導法則,會求分段函數的導數,會求反函數與隱函數的導數.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.了解微分的概念、導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.
5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.
6.掌握用洛必達法則求未定式極限的方法.
7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.
8.會用導數判斷函數圖形的凹凸性(注:在區(qū)間(a,b)內,設置函數f(x)有二階導數,當f‘’(x)>0時,f(x)的圖形是凹的,f‘’(x)<0,的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形.
三、一元函數積分學
【考試內容】
原函數和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數及其導數牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法反常(廣義)積分定積分的應用
【考試要求】
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法與分部積分法.
2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數并會求它的導數,掌握牛頓-萊布尼茨公式以及定積分的換元積分法和分部積分法.
3.會利用定積分計算平面圖形的面積、旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題.
4.理解反常積分的概念,了解反常積分收斂的比較判別法,會計算反常積分.
四、多元函數微積分學
【考試內容】
多元函數的概念二元函數的幾何意義二元函數的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數的性質多元函數偏導數的概念與計算多元復合函數的求導法與隱函數求導法二階偏導數全微分多元函數的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算無界區(qū)域上簡單的反常二重積分
【考試要求】
1.了解多元函數的概念,了解二元函數的幾何意義.
2.了解二元函數的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數的性質.
3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數.
4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題.
5.理解二重積分的概念,了解二重積分的基本性質,了解二重積分的中值定理,掌握二重積分的計算方法(直角坐標、極坐標),了解無界區(qū)域上較簡單的反常二重積分并會計算.
五、無窮級數
【考試內容】
常數項級數的收斂與發(fā)散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與p級數及其收斂性正項級數收斂性的判別法任意項級數的絕對收斂與條件收斂交錯級數與萊布尼茨定理冪級數及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數的和函數冪級數在其收斂區(qū)間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式
【考試要求】
1.理解常數項級數收斂、發(fā)散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要條件.
2.掌握幾何級數及p級數的收斂與發(fā)散的條件.
3.掌握正項級數收斂性的比較判別法和比值判別法,根值判別法,會用積分判別法.
4.掌握交錯級數的萊布尼茨判別法.
5.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系.
6.理解冪級數收斂半徑的概念,并掌握冪級數的收斂半徑、收斂區(qū)間及收斂域的求法.
7.了解冪級數在其收斂區(qū)間內的基本性質(和函數的連續(xù)性、逐項求導和逐項積分),會求一些冪級數在收斂區(qū)間內的和函數,并會由此求出某些數項級數的和.
8.掌握的麥克勞林(Maclaurin)展開式,會用它們將一下簡單函數間接展開為冪級數.
六、常微分方程與差分方程
【考試內容】
常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程及簡單的非齊次線性微分方程差分與差分方程的概念差分方程的通解與特解一階常系數線性差分方程微分方程的簡單應用
【考試要求】
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.
3.理解線性微分方程解的性質及解的結構.
4.掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程.
5.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程.
6.了解差分與差分方程及其通解與特解等概念.
7.了解一階常系數線性差分方程的求解方法.
8.會用微分方程求解簡單的經濟應用問題.
以上就是2023考研數學三微積分部分大綱內容,備考的小伙伴可以根據大綱變化及時做出調整。其他科目考研大綱后續(xù)也會同步給大家。

掃碼可以領取超全解析文檔